
TektosyneUser’sGuide
Overview of Library Features by Namespace

Christoph Nahr
christoph.nahr@kynosarges.org

Published 09 June 2012 on the Tektosyne home page
http://www.kynosarges.org/Tektosyne.html

mailto:christoph.nahr@kynosarges.org
http://www.kynosarges.org/Tektosyne.html

Abstract

is guide summarizes the contents of the Tektosyne Library for the . Framework. e
current versions of this document, the library itself, and its class reference are available at the
Tektosyne home page. Please see there for system requirements and other information.

is guide covers all Tektosyne namespaces in alphabetical order, grouping the types in
each namespace by thematically related categories. e goal is to provide a compact overview of
the library’s functionality, while explaining some complex or unusual features in greater detail.
Please see the Tektosyne Class Reference for a complete documentation of all types.

Online Reading. is document contains a “Bookmarks” navigation tree. Click on any tree
node to jump to the corresponding section. Moreover, all phrases in blue color are clickable
hyperlinks that will take you to the section or address they describe.

Colophon. is document was written in LATEX using MiKTeX 2.9 with XeLaTeX, -
Script, and various other packages. See LATEX Typesetting with MiKTeX for details.

e  diagrams were reverse-engineered from the compiled . assemblies, using
my free Class Diagrammer application, and embedded as  files.

Body text is set in Minion 12 pt from Adobe’s Minion Pro collection, designed by Robert
Slimbach. Subtitles anddiagram text are set in various sizes andweights ofMyriad fromAdobe’s
Myriad Pro collection, designed by Robert Slimbach and Carol Twombly.

Identifiers and code fragments outside of  diagrams are set in Microso’s Consolas,
designed by Lucas de Groot. e font is artificially compressed by 20% to take up less space.

Date Version Library Description

2012–06–09 1.2.0 5.6.3 Changed typesetting to LATEX with MiKTeX
2012–05–30 1.1.1 5.6.3 Added RectLocation
2012–03–31 1.1.0 5.6.1 Changed typesetting to  with oXygen
2012–02–26 1.0.3 5.6.0 Added VisualSource, ConcurrentVisualHost
2012–01–09 1.0.2 5.5.6 Added AssemblyExtensions
2011–06–24 1.0.1 5.5.2 Updated QuadTree<T>, Subdivision, IGraph2D<T>
2011–05–31 1.0.0 5.5.1 Initial release, using  with FrameMaker

http://www.kynosarges.org/Tektosyne.html
http://www.kynosarges.org/LaTeX.html
http://www.kynosarges.org/Diagrammer.html

Contents

1 Assemblies 6

2 Root Namespace 7
2.1 Exceptions . 7
2.2 Mathematics . 8
2.3 Strings . 8
2.4 Tuples . 9

3 Collections Namespace 10
3.1 Collection Keys . 10
3.2 Extended Collections . 11
3.3 Specialized Collections . 12
3.4 Tree Collections . 12
3.5 Comparing Objects . 13
3.6 Sorting & Searching . 13

4 Geometry Namespace 15
4.1 Geometric Primitives . 16
4.2 Basic Algorithms . 17
4.3 Line Intersection . 17
4.4 Point Comparisons . 18
4.5 Regular Polygons . 18
4.6 Planar Subdivisions . 19

4.6.1 Edge and Face Keys . 20
4.6.2 Half-Edge Cycles . 20
4.6.3 Vertex Distances . 22
4.6.4 Vertex Regions . 22

4.7 Voronoi Diagrams . 22
4.8 Windows Specifics . 23

3

Contents

5 Graph Namespace 24
5.1 Graphs and Agents . 24

5.1.1 Graph Structure . 24
5.1.2 World Coordinates . 26
5.1.3 Moving Agents . 26

5.2 A* Pathfinding Algorithm . 27
5.2.1 Limited Search Range . 28
5.2.2 Minimal World Distance . 28
5.2.3 Transient and Permanent Occupation 28
5.2.4 Movement Step Costs . 29
5.2.5 Relaxed Movement Range . 29

5.3 Path Coverage Algorithm . 30
5.4 Flood Fill Algorithm . 30
5.5 Visibility Algorithm . 30

6 IO Namespace 32

7 Net Namespace 33

8 Win32Api Namespace 34
8.1 Safe Memory Handles . 34
8.2 Simple MAPI Protocol . 35

9 Windows Namespace 36
9.1 Bitmap Manipulation . 37
9.2 Concurrent Drawing . 37

9.2.1 Dispatcher & Render read . 37
9.2.2 Multiple Dispatcher reads . 38
9.2.3 Limitations . 38

9.3 Default eme Selection . 39
9.4 Windows Forms . 39

9.4.1 Hosting Example . 40

10 Xml Namespace 43

4

List of Figures

1.1 Assembly Namespaces . 6

4.1 Subdivision Types . 21

5.1 Graph Types . 25

9.1 NumericUpDown Hosting . 41
9.2 NumericUpDown Types . 42

5

C 1

Assemblies

e Tektosyne Library ships in two assemblies. Tektosyne.Core only requires the four “core”
 assemblies available to a Portable Class Library, whereas Tektosyne.Windows requires many
other  assemblies that are specific toWindows. is separation should allowmost Tektosyne
features to work on any platform that supports the . Framework 4.0, including Mono, ,
and Windows Phone 7. Please see the library’s ReadMe file for further details on subject.

e distribution of namespaces across assemblies is shown in Figure 1.1. Two names-
paces are present in both assemblies: Tektosyne.Geometry is generally platform-independent
but also provides some conversions to + and , and the split of Tektosyne.Xml was nec-
essary because some  s are not supported by the four “core” assemblies. e following
chapters will note which assembly contains each type.

«assembly»
Tektosyne.Core
Tektosyne
Tektosyne.Collections
Tektosyne.Geometry
Tektosyne.Graph
Tektosyne.IO
Tektosyne.Xml

«assembly»
Tektosyne.Windows
Tektosyne.Geometry
Tektosyne.Net
Tektosyne.Win32Api
Tektosyne.Windows
Tektosyne.Xml

Figure 1.1:Assembly Namespaces

e Tektosyne download package also contains an assembly with unit tests for NUnit and a
 application with testing and demonstration dialogs, Tektosyne.GuiTest.exe. is guide
does not cover these assemblies, but Windows users are encouraged to explore the GuiTest
application.

6

C 2

Root Namespace

e root namespace Tektosyne contains types related to the  root namespace System, or at
least unrelated to any of the more specific namespaces. Most can be grouped in thematically
related sections, except for the following two types.

AssemblyExtensions — Provides extensionmethods to conveniently retrieve informational at-
tributes and public key tokens from a given Assembly.

EventArgs<T> — Provides an event argument that contains a single arbitrary value, trans-
mitting data to an event handler without having to derive a dedicated
type from System.EventArgs.

2.1 Exceptions

is section comprises several specialized exception types, as well as numerous helpermethods
to simplify throwing exceptions.

ArgumentNullOrEmptyException — Derives from System.ArgumentException. rownwhen an
argument is either a null reference or “empty” in some type-specific
way, e. g. an empty string.

AssertionException — rown by the ThrowHelper.Assert method. Useful when you wish to
avoid the standard Debug/Trace.Assert mechanism and throw a reg-
ular exception instead.

DetailException — Adds a second text property for technical details. Related features in-
clude method Tektosyne.Xml.XmlUtility.GetXmlMessage to construct
the detail text, and  dialog Tektosyne.Windows.MessageDialog to
show both text properties.

7

2. Root Namespace

PropertyValueException — Derives from System.InvalidOperationException. rown when
an operation fails because a property has an invalid value (the usual
reason for “invalid operations”).

ThrowHelper — Static methods that create and throw many common exceptions. is
simplifies string formatting and reduces the caller’s memory footprint
compared to the surprisingly large amount of machine code produced
for literal throw instructions. For short methods, this size difference
can determine whether the method is inlined by the  compiler.

2.2 Mathematics

is section comprises several mathematical types and methods unrelated to computational
geometry; see the namespace Tektosyne.Geometry for the latter.

Fortran — Static methods whose names and semantics mirror standard functions of
Fortran 90, with overloads for all numerical types except for System.Complex.

MathUtility — Static methods providing epsilon comparisons, prime number tests, and
range restriction and normalization.

MersenneTwister — Pseudo-randomnumber generatorMT19937, knownas “MersenneTwister.”
e C# implementation is based on the original C program by Takuji
Nishimura and Makoto Matsumoto, with additions by Isaku Wada.

2.3 Strings

is section comprises the library’s localizable string resources, as well as several types and
methods for string manipulation.

Strings — Contains all localizable strings of the Tektosyne library, including many
general-purpose error messages that may be useful in other applications.

StringUtility — Staticmethods that provide natural string sorting (i. e. numerical substrings
are sorted numerically), testing strings for  text and e-mail addresses,
and more.

NaturalString — Combines a System.String with implicit natural string sorting, using the
sorting rules of the current culture for non-numerical characters.

OrdinalString — Combines a System.String with implicit natural string sorting, using ordi-
nal sorting rules for non-numerical characters.

8

2. Root Namespace

2.4 Tuples

. 4.0 defines a family of generic System.Tuple types, intended to support the new functional
programming language F#. All standard tuples are immutable classes: immutable because F#
prefers immutable objects, and classes because they can grow to any size.

Although C# lacks built-in support for tuples, they are still useful to group several values
without having to define a dedicated type. With this purpose in mind, the root namespace
provides two alternative tuple implementations. Both flavors define instances for 2–4 elements,
and static factory methods that allow generic type inference.

MutableTuple<T,…,Tn> — Generic tuples implemented asmutable classes (i. e. reference types).
Not usually desirable, but convenient in special cases such as two-way data
binding to  controls.

ValueTuple<T,…,Tn> — Generic tuples implemented as immutable structures (i. e. value types).
More efficient for small amounts of data, such as combining a few numerical
and boolean values.

9

C 3

Collections Namespace

e namespace Tektosyne.Collections contains a variety of generic collections, some of which
extend standard collections in the namespace System.Collections.Generic, aswell as helper
types and methods for manipulating collections.

Note. To save space, generic type parameters that represent dictionary keys and values are
shown as K and V, instead of the actual TKey and TValue used by the library.

3.1 Collection Keys

Standard dictionaries associate elements with separate keys. In practice, however, many el-
ement types also embed the same key in their own data, e. g. as an Id or Name property. is
causes two problems: the associated keymight not match the embedded key, and the separately
stored dictionary key wastes memory.

e IKeyedValue<K> interface tackles both issues with a Key property that returns the
object’s embedded key. Tektosyne collections that store key-and-value pairs require or allow
IKeyedValue<K> instances for the values, and check formatching associated and embedded keys.
Other Tektosyne collections store lists of IKeyedValue<K> instances that can be treated like dic-
tionaries while using only embedded keys.

IKeyedValue<K> — Associates an object with a key, exposed as a read-only Key prop-
erty.

IMutableKeyedValue<K> — Adds a SetKey method to the IKeyedValue<K> interface, allowing
key changes.

KeyMismatchException — rown when a Tektosyne collection attempts to store an IKeyed-
Value<K> object with an associated key that differs from its embed-
ded Key property.

10

3. Collections Namespace

3.2 Extended Collections

e collections with an …Ex suffix provide extended versions of standard collections with a va-
riety of extra features. QueueEx<T> and StackEx<T> derive directly from the corresponding stan-
dard classes, whereas the other extended collections use the standard classes for their internal
backing storage, with standard methods reimplemented as forwarders.

e reason for this is that all extended collections, except for QueueEx<T> and StackEx<T>,
provide a read-only wrapper as their most significant new feature. Like the AsReadOnlymethods
of the standard classes Array and List<T>, the wrapper is a “live” view that reflects all changes
made to the underlying collection and requires no memory for content duplication.

However, our implementation returns the same type as the underlying collection rather
than a standard ReadOnlyCollection<T>, allowing the transparent substitution of read-onlywrap-
pers for writable collections at runtime. e read-only wrapper is cached with each collection,
and a public SyncRoot property refers both the writable collection and its read-only wrapper (if
any) to the SyncRoot of their shared backing storage for multithreaded synchronization.

Moreover, a static read-only Empty field holds the read-only wrapper of an empty col-
lection. Since the Empty collection is immutable, it is a safe and efficient alternative to null
references for representing collections that cannot have any elements.

Other additions include a Copy method that performs a deep copy if all elements imple-
ment ICloneable, an Equals method that compares two collections for equal contents, auto-
matic key checking for dictionaries that store IKeyedValue<K> elements, and more.

ArrayEx<T> — Provides an extended Array – that is, a fixed-size collection – that can be
indexed in one or more dimensions, according to a user-defined rank.
Variousmethods convert indices and array contents between their one-
and multi-dimensional representations.

DictionaryEx<K,V> — Provides an extended Dictionary<K,V>, i. e. a dynamic hashtable.

ListEx<T> — Provides an extended List<T> which optionally ensures that all ele-
ments are unique.

QueueEx<T> — Provides an extended Queue<T>, i. e. a first-in, first-out () collection.

SortedDictionaryEx<K,V> — Provides an extended SortedDictionary<K,V>, i. e. a red-black bi-
nary search tree.

SortedListEx<K,V> — Provides an extended SortedList<K,V> with the very useful methods
GetByIndex, GetKey, and SetByIndex that were present in the standard
non-generic SortedList, but inexplicably dropped from the generic ver-
sion.

StackEx<T> — Provides an extended Stack<T>, i. e. a last-in, first-out () collection.

11

3. Collections Namespace

3.3 Specialized Collections

e following collections specialize other generic collection classes. All of them implement the
common extensions described in the previous section.

e first two collections replace a generic key type with Int32. Integer values are their
own hash codes and can be compared in a single machine instruction, obviating the need for
slow calls to generic hashing and comparison methods.

e remaining collections derive from ListEx<T> to provide dictionaries with an un-
sorted indexed backing storage, maintaining the insertion order of elements. Key and index
access mimics the pattern defined by SortedListEx<K,V>.

Int32Dictionary<V> — Provides a Dictionary<K,V> whose keys are Int32 values.

Int32HashSet — Provides a limited HashSet<T> whose elements are Int32 values.

KeyedList<K,V> — Provides a ListEx<V> whose elements are accessible by embedded
keys. All V elements must implement IKeyedValue<K>.

KeyValueList<K,V> — Provides a ListEx<KeyValuePair<K,V>> whose elements are key-and-
value pairs that are accessible by their key components.

MultiKeyedList<K,V> — Provides a ListEx<V> whose elements are accessible by keys that are
derived from each element by an arbitrary key converter. e con-
verter method can be changed aer construction, allowing one col-
lection to support multiple keys over its lifetime.

3.4 Tree Collections

is section comprises two popular search trees absent from the . e C# implementations
are based onMichael J. Laszlo’sComputational Geometry and Computer Graphics in C++, Pren-
tice Hall 1996. (e braided search tree is not inherently a geometric data structure, but it is
well-suited for geometric sweep line algorithms.)

Both trees expose their nodes as public classes with read-only properties. is allows
clients to directly navigate the tree structure, including all internal nodes, rather than merely
performing searches or enumerating leaves

BraidedTree<K,V> — Provides a generic braided search tree, i. e. a binary search tree whose
nodes are connected in key sorting order by a doubly-linked list. Finding
the smallest, largest, next-smallest, and next-largest element are all O(1)
operations. e tree uses randomized balancing rather than the red-
black balancing of the standard SortedDictionary<K,V>.

BraidedTreeNode<K,V> — Provides a node in a BraidedTree<K,V>.

12

3. Collections Namespace

QuadTree<V> — Provides a generic quadrant tree whose keys are Tektosyne.Geometry.
PointD values, i. e. a two-dimensional search tree that recursively divides
a specified bounding rectangle into equal-sized quadrants. Finding the
quadrant that contains a given point and finding all points within a given
range are both logarithmic operations.

Notable features include a heuristic depth probe to speed up searches
in large trees, inspired by Sariel Har-Peled’s lecture Quadtrees – Hierar-
chical Grids; and a Move method that can reduce successive key changes
to O(1) operations, provided that old and new keys are clustered within
the same leaf node.

QuadTreeNode<V> — Provides a node in a QuadTree<V>.

3.5 Comparing Objects

e  provides several incompatible ways to compare two arbitrary objects: a non-generic
and a generic interface, and a generic delegate. Since delegates are themost basic representation,
two simple adapter classes wrap them in the equivalent interfaces.

ComparerAdapter<T> — Wraps a Comparison<T> method in the IComparer and IComparer<T>
interfaces, for compatibility with consumers that require these inter-
faces.

ComparerCache<T> — Caches (Equality)Comparer<T>.Default for faster access. ese 
properties already perform their own caching, but access is still so slow
that the extra cache level provides a noticeable speedup.

EqualityComparerAdapter<T> — Wraps an Equals<T,T>method in the IEqualityComparer and
IEqualityComparer<T> interfaces, for compatibilitywith consumers that
require these interfaces.

3.6 Sorting & Searching

is section comprises numerous helpermethods and standard sorting & searching algorithms
for arbitrary collections, typed as generic or non-generic standard interfaces.

CollectionsUtility — Helpermethods for comparing collections; creating index arrays; mov-
ing and swapping elements; selecting a random element and random-
izing element order; andmanipulating collectionswith IKeyedValue<T>
and IMutableKeyedValue<T> elements.

Sorting — Standard sorting algorithms for arbitrary IList<T> collections, as well
as a binary search for sorted IList<T> collections. e sorting algo-
rithms include heap sort, insertion sort, quick sort, and shell sort. e

13

3. Collections Namespace

C# implementations are based on Robert Sedgewick’s Algorithms in
Java (3rd ed.), Addison-Wesley 2003.

e quick sort and binary search algorithms are slower than the
highly optimized  algorithms, but the latter only work on arrays
and array-backed standard collections. Two additionalmethods, Best-
QuickSort and BestBinarySearch, dispatch to the superior  algo-
rithms if the concrete specified collection supports them.

14

C 4

Geometry Namespace

e namespace Tektosyne.Geometry covers the field of computational geometry, including a set
of geometric primitives as well as a variety of standard algorithms and data structures. All types
use two-dimensional coordinates exclusively.

Many algorithms were adapted from C/C++ and pseudocode programs in standard lit-
erature, including the following sources. Please consult the Class Reference for details.

— Mark de Berg et al., Computational Geometry, Springer-Verlag 2008 (3rd ed.)

— Michael J. Laszlo,Computational Geometry and Computer Graphics in C++, PrenticeHall
1996

— Joseph O’Rourke, Computational Geometry in C, Cambridge University Press 1988 (2nd
ed.)

e orientation of the vertical axis is somewhat problematic in computational geometry. e
standard mathematical orientation has y-coordinates increase upward, but the standard draw-
ing orientation of computer graphics puts the origin in the upper-le corner of the screen and
has y-coordinates increase downward.

e Tektosyne Class Reference notes the actual orientation wherever it is relevant. Gener-
ally, Tektosyne.Geometry types assume mathematical orientation. One major exception are the
rectangle primitives whose Top property refers to the smallest y-coordinate, for compatibility
with  rectangles that were designed for screen display.

Another frequent source of trouble is floating-point imprecision. Some Tektosyne.Geo-
metry algorithms use a fixed comparison epsilon of − to achieve numerical stability, while
others allow a user-defined epsilon. Some algorithms are available in both exact and epsilon
variants. You need to experiment with your own data to determine the most suitable variant.

When an algorithm accepts a user-defined epsilon, you can usually choose a fairly large
value thatmerges clearly distinct points rather than just compensating for floating-point impre-
cision. One application is to map the location of a user’s mouse click on the screen to a nearby

15

4. Geometry Namespace

point in a geometric data structure. e demo application Tektosyne.GuiTest.exe offers several
test dialogs that let you experiment with super-sized comparison epsilons.

4.1 Geometric Primitives

e namespaces System.Drawing and System.Windows each provide a set of geometric primi-
tives in two dimensions (points, sizes, lines, rectangles). Unfortunately, both requireWindows-
specific assemblies and are mutually incompatible to boot. erefore, we define our own geo-
metric primitives which compare to the  types as follows:

— All types are immutable structures, as one would expect. Strangely, the  types are
mutable structures, perhaps for compatibility with Visual Studio’s  designers.

— All types define a static read-only field Empty that holds a default-initialized instance,
as with the System.Drawing types. e System.Windows types redefine Empty to hold a
“magic” invalid value, which is confusing and a bad idea to begin with. Use Nullable<T>
or a separate boolean flag to represent invalid values.

— Points define addition and subtraction with other points; sizes with other sizes. e 
offers an addition of points and sizes instead, which I found rather useless.

— Sizes and rectangles always require a non-negative width and height. Some of the 
sizes and rectangles also perform these checks while others do not.

— Integer rectangles exclude their greatest coordinates in both dimensionswhereas floating-
point rectangles include them. is reproduces the behavior of  types which stems
from the old  habit of using integer extensions to control C-style for loops.

— ere is no dedicated vector type. e  type System.Windows.Vector holds exactly
the same data as System.Windows.Point, and so merely forces developers to convert point
coordinates back and forth in order to use vector operations. Instead, our point types
directly implement the features of System.Windows.Vector.

All geometric primitives are available with the three coordinate types Double, Single, and Int32,
indicated by a D, F, and I suffix, respectively. e Double and Single variants are fully equivalent
whereas the Int32 variants lack some algorithms that make no sense for integer coordinates.

Instance methods on geometric primitives generally operate with the same precision
used to represent coordinates, except for methods on Int32 primitives which use Double preci-
sion when fractional results are expected. e stand-alone algorithms described in the follow-
ing sections always expect Double coordinates and operate with Double precision.

LineD, LineF, LineI — Provide line segments with Double, Single, and Int32 coordinates.

PointD, PointF, PointI — Provide spatial locations with Double, Single, and Int32 coordi-
nates.

16

4. Geometry Namespace

RectD, RectF, RectI — Provide rectangles with Double, Single, and Int32 coordinates.

SizeD, SizeF, SizeI — Provide spatial extensions with Double, Single, and Int32 coordi-
nates.

4.2 Basic Algorithms

is section comprises basic constants and algorithms for computational geometry which do
not fall in any of the more specialized categories covered below.

Some basic algorithms are defined as instance methods on geometric primitives. ese
include angle calculations and vector operations on PointD/F/I; locating a point relative to a
line segment on LineD/F/I; and the Liang-Barsky line clipping algorithm on RectD/F.

Angle — Constants and methods to convert, normalize, and compare angles.

Compass — Specifies the eight major compass directions as angles in degrees, starting
with zero degrees for north and continuing clockwise.

GeoAlgorithms — Static methods for creating random points, line segments, and polygons;
computing the area and centroid of a polygon; computing the convex hull
of a point set (Graham scan); locating a point relative to a polygon (ray
crossings algorithm); and more.

LineLocation — Specifies the location of a point relative to a line segment: on or before
the start point, on or aer the end point, between both points, or to the
le or right of the line.

PolygonLocation — Specifies the location of a point relative to a polygon: strictly inside, strictly
outside, or coinciding with an edge or a vertex.

RectLocation — Specifies the location of a point relative to a rectangle, expressed as a bit-
wise combination of each point coordinate’s location relative to the rect-
angle extension in the same dimension.

4.3 Line Intersection

Several algorithms intersect two or more line segments, represented either by LineD instances
or pairs of PointD coordinates. e LineD/F/I structures also define instance methods that
forward to the two-segment algorithm.

LineIntersection — Defines a robust algorithm for finding the intersection, if any, between
two line segments or their infinite extensions, and also holds the result
of the algorithm.

17

4. Geometry Namespace

ealgorithmexamines both the cross-product lengths for each trip-
let of end points and the line equation parameters for both segments to
determine intermediate results. If the test results contradict each other,
the algorithm starts over with a greater comparison epsilon until both
tests agree. e minimum comparison epsilon is always − to avoid
such recursions in most cases.

LineRelation — Specifies the relationship between two line segments: parallel, collinear,
or divergent.

MultiLineIntersection — Defines both a brute-force and a sweep line algorithm for finding
all points of intersection between multiple line segments. e brute-
force algorithm simply intersects all input lines with each other. is is
always an O(n) operation but has virtually no overhead and can accept
a comparison epsilon greater than − to merge nearby crossings.

e Bentley-Ottmann sweep line algorithm is faster for large input
sets with few intersections, but otherwise slower due to its large over-
head. An improved sweep line comparer raises numerical stability to
the level of the brute-force algorithm.

MultiLinePoint — Contains the results of either MultiLineIntersection algorithm.

4.4 Point Comparisons

Two IComparer<PointD> implementations compare points lexicographically, preferring either
the x- or the y-coordinate, and an interface exposes their common features. Comparisons can
be performed exactly or with a user-defined epsilon.

Both classes provide a nearest-point search for lexicographically sorted PointD collec-
tions. e algorithm first performs a binary search in the preferred dimension to approximate
the index of the search coordinates, and then expands a radius around that index until the near-
est point is found. is heuristic can achieve a runtime of O(ld n) with no additional overhead,
assuming that coordinates are more or less evenly distributed throughout the collection.

IPointDComparer — Compares two PointD instances lexicographically. e comparison order
depends on the concrete implementation.

PointDComparerX — Compares two PointD instances lexicographically, preferring x-coordinates.

PointDComparerY — Compares two PointD instances lexicographically, preferring y-coordinates.

4.5 Regular Polygons

e following types provide a flexible and efficient representation of regular polygon grids. e
customizablemaps of theHexkit StrategyGame System are based on these types, and theHexkit

18

http://www.kynosarges.org/Hexkit.html

4. Geometry Namespace

User’s Guide describes them in greater detail. e demo application Tektosyne.GuiTest.exe also
provides a dialog to save and print arbitrary polygon grids.

PolygonGrid — Provides a rectangular grid of regular polygons with two-dimensional
indexing. Features include efficient distance calculations, conversions
between grid and display coordinates, a read-only wrapper similar to
those of Tektosyne.Collections classes, and pathfinding between grid
locations using Tektosyne.Graph algorithms.

PolygonGrid.SubdivisionMap — Maps the elements of a PolygonGrid to the faces of an equiva-
lent Subdivision. is conversion is only intended for testing, as Poly-
gonGrid is far more efficient than Subdivision.

PolygonGridShift — Specifies the shiing of rows or columns in a PolygonGrid, i. e. whether
the second row or column is shied right or down compared to the
first one.

RegularPolygon — Provides a regular polygonwith three ormore sides. A RegularPolygon
with four or six sides can be used to construct a PolygonGrid.

PolygonOrientation — Specifies the orientation of a RegularPolygon: lying on an edge or stand-
ing on a vertex.

4.6 Planar Subdivisions

e following types represent a planar subdivision, i. e. any collection of line segments that
intersect only at their end points, as a doubly-connected edge list (). is representation
is memory-intensive but allows fast navigation through all elements of the subdivision.

Since any planar graph with straight bounded edges can be represented as a Subdivision,
several other types provide conversions to this class, including PolygonGrid and Voronoi. A
dedicated interface maps the resulting Subdivision faces to elements of the original structure.

Subdivision — Provides a planar subdivision composed of straight bounded edges,
vertices on the end points of edges, and faces formed by closed loops of
edges. Pathfinding between vertices is supported by Tektosyne.Graph
algorithms.

You can create a new Subdivision from a given set of line segments
or polygons, or by intersecting two existing instances. You can also
add or remove individual edges, split edges in half, andmove or delete
individual vertices (along with their edges). is set of operations al-
lows interactive editing of a Subdivision.

SubdivisionEdge — Provides one half-edge in a Subdivision. Half-edges are always paired
with twin half-edges in the opposite direction to form one full edge of
the planar subdivision.

19

4. Geometry Namespace

SubdivisionFace — Provides one face in a Subdivision. Faces are polygons that may or
may not enclose any area. Faces with a positive area may contain one
ormore “holes,” i. e. interior faces. Every subdivision also contains one
unbounded face that represents the entire two-dimensional plane and
thus encloses all bounded faces as its “holes.”

SubdivisionSearch — Provides a fast but memory-intensive search structure for a Subdivi-
sion. e Subdivision class itself provides slower brute-force searches
that require no additional memory.

SubdivisionElement — Represents an arbitrary Subdivision element, i. e. one vertex, half-edge,
or face. Returned by the general search algorithms Subdivision.Find
and SubdivisionSearch.Find.

SubdivisionElementType — Specifies the type of a SubdivisionElement: vertex, half-edge, or
face.

ISubdivisionMap<T> — Provides a bidirectional mapping between the faces of a Subdivision
and the generically typed objects in some arbitrary collection.

Creating a Subdivision from another geometric structure auto-
matically establishes a structural mapping. Applications might also
define semantic mappings, e. g. correlating statistical information to
faces that represent geographical areas.

See Figure 4.1 for the public interfaces of all types listed above, as well as their mutual rela-
tionships (with some elided for lack of space). e implementation follows the  structure
outlined by Mark de Berg et al., Computational Geometry, Springer-Verlag 2008 (3rd ed.), but
a few peculiar features are worth pointing out.

4.6.1 Edge and Face Keys

Every SubdivisionEdge and SubdivisionFace is identified by an Int32 key that is unique within
its Subdivision. e corresponding Edges and Faces collections provide an O(ld n) access by
key, or an O(1) access by index if already known.

e ascending sequence of keys reflects the order in which the Subdivision was con-
structed. Keys are normally immutable but can be renumbered to plug “holes” in the sequence
caused by dynamic edge deletion.

Strictly speaking, these keys are an unnecessary feature. References and/or indices would
suffice to identify half-edges and faces. However, keys so enormously simplify unit testing and
debugging that they are worth the extra memory.

4.6.2 Half-Edge Cycles

e half-edge cycle that contains a SubdivisionEdge constitutes a polygon which may have a
positive area. CyclePolygon builds the polygon, but several other properties avoid this step and

20

4. Geometry Namespace

«interface»
ISubdivisionMap<T>
Source: Subdivision { get }
Target: Object { get }

+
+

FromFace(SubdivisionFace): T
ToFace(T): SubdivisionFace

+
+

IEquatable<SubdivisionEdge>, IKeyedValue<Int32>
«sealed»

SubdivisionEdge
CycleArea: Double { get }
CycleCentroid: PointD { get }
CycleEdges: IEnumerable<SubdivisionEdge> { get }
CyclePolygon: PointD[] { get }
Destination: PointD { get }
Face: SubdivisionFace { get }
IsCycleAreaZero: Boolean { get }
Key: Int32 { get }
Next: SubdivisionEdge { get }
Origin: PointD { get }
OriginEdges: IEnumerable<SubdivisionEdge> { get }
Previous: SubdivisionEdge { get }
Twin: SubdivisionEdge { get }

+
+
+
+
+
+
+
+
+
+
+
+
+

GetEdgeTo(PointD): SubdivisionEdge
GetEdgeTo(PointD, Double): SubdivisionEdge
Locate(PointD): PolygonLocation
Locate(PointD, Double): PolygonLocation
ToLine: LineD
ToLineReverse: LineD

+
+
+
+
+
+

IEquatable<SubdivisionElement>, ISerializable
«struct»

SubdivisionElement
Edge: SubdivisionEdge { get }
ElementType: SubdivisionElementType { readOnly }
Face: SubdivisionFace { get }
IsUnboundedFace: Boolean { get }
NullFace: SubdivisionElement { readOnly }
Vertex: PointD { get }

+
+
+
+
+
+

«enumeration»
SubdivisionElementType

Edge = 0
Face = 1
Vertex = 2

+
+
+

IEquatable<SubdivisionFace>, IKeyedValue<Int32>
«sealed»

SubdivisionFace
AllCycleEdges: IEnumerable<SubdivisionEdge> { get }
InnerEdges: ListEx<SubdivisionEdge> { get }
Key: Int32 { get }
OuterEdge: SubdivisionEdge { get }
Owner: Subdivision { readOnly }

+
+
+
+
+

FindNearestEdge(PointD, out Double): SubdivisionEdge+

SubdivisionSearch
Epsilon: Double { readOnly }
Source: Subdivision { readOnly }

+
+

.ctor(Subdivision, Boolean = False)
Find(PointD): SubdivisionElement

+
+

ICloneable, IGraph2D<PointD>
Subdivision

Connectivity: Int32 { get }
Edges: SortedListEx<Int32, SubdivisionEdge> { get }
Epsilon: Double { get, set }
Faces: SortedListEx<Int32, SubdivisionFace> { get }
IsEmpty: Boolean { get }
NodeCount: Int32 { get }
Nodes: IEnumerable<PointD> { get }
VertexRegions: Dictionary<PointD, PointD[]> { get }
Vertices: SortedListEx<PointD, SubdivisionEdge> { get }

+
+
+
+
+
+
+
+
+

.ctor

.ctor(Int32, Int32, Int32)
AddEdge(PointD, PointD): SubdivisionEdge
AddEdge(PointD, PointD, out Int32, out Int32): SubdivisionEdge
Clone: Object
Contains(PointD): Boolean
Find(PointD, Double = 0): SubdivisionElement
FindEdge(PointD, PointD): SubdivisionEdge
FindFace(PointD): SubdivisionFace
FindFace(PointD[], Boolean = False): SubdivisionFace
FindNearestEdge(PointD, out Double): SubdivisionEdge
FindNearestVertex(PointD): Int32
FromLines(LineD[], Double = 0): Subdivision
FromPolygons(IList<PointD[]>, Double = 0): Subdivision
GetDistance(PointD, PointD): Double
GetEdgesByOrigin: SubdivisionEdge[]
GetNearestNode(PointD): PointD
GetNeighbors(PointD): IList<PointD>
GetWorldLocation(PointD): PointD
GetWorldRegion(PointD): PointD[]
GetZeroAreaCycles: List<SubdivisionEdge>
Intersection(Subdivision, Subdivision, out ValueTuple<Int32, Int32>[]): Subdivision
MoveVertex(Int32, PointD): Boolean
RemoveEdge(Int32): Boolean
RemoveEdge(Int32, out Int32, out Int32): Boolean
RemoveVertex(Int32): Boolean
RenumberEdges: Boolean
RenumberFaces: Boolean
SplitEdge(Int32): SubdivisionEdge
ToLines: LineD[]
ToPolygons: PointD[][]

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Edges

Faces

Find

Find

ElementType

Source

From/ToFace

Source

Figure 4.1: Subdivision Types

directly operate on the linked half-edges. CycleArea and CycleCentroid calculate the polygon’s
area and centroid, respectively, and IsCycleAreaZero tests for a zero-area polygon by examining
face pointers rather than the area itself, which also avoids rounding errors.

CycleEdges employs the C# enumerator state machine to enumerate all half-edges in the
cycle. OriginEdges does the same for all half-edges emanating from the same Origin, and Sub-
divisionFace.AllCycleEdges for all half-edge cycles within the same face. ese properties are

21

4. Geometry Namespace

convenient rather than efficient, due to the overhead of the statemachine. Use explicit do-while
loops over the linked half-edges for maximum performance.

4.6.3 Vertex Distances

e IGraph2D<T> method GetDistance returns the actual Euclidean distance between vertices,
including the final square root, rather than the less expensive squared distance. is is necessary
to avoid overestimating the total cost of compound paths within the subdivision.

Assume a straight path consisting of multiple edges so that the total Euclidean distance
equals the sum of the lengths of all edges. If GetDistance returned a squared Euclidean dis-
tance, the sum of all edge results would be smaller than the result for the two extreme vertices.
is violates the invariant that the sum of the distances between all successive nodes within a
sequence is never less than the distance between any two nodes from the same sequence.

4.6.4 Vertex Regions

e VertexRegions collection can associate Vertices with user-defined polygonal regions. e
IGraph2D<T> method GetWorldRegion returns elements from this collection. e elements must
be set explicitly, as the vertices of an arbitrary subdivision imply no meaningful regions.

As a typical example, you might create the Subdivision from a Delaunay triangulation
and assign the Voronoi regions of its dual graph to the VertexRegions collection.

4.7 Voronoi Diagrams

e following types construct two standard structures from a given set of generator sites: the
Voronoi diagram, whose polygonal regions comprise all points that are nearest to each gener-
ator site; and the Delaunay triangulation, its dual graph, whose edges are the nearest-neighbor
connections for all generator sites.

Voronoi — Defines a sweep line algorithm to find the Delaunay triangulation and (op-
tionally) the Voronoi diagram for a given PointD set, in logarithmic time.
e C# implementation is based on the original C program by Steven J.
Fortune.

VoronoiEdge — Represents one edge in a Voronoi diagram, including the diagram vertices
that terminate the edge as well as the generator sites that are bisected by
the edge.

VoronoiResults — Contains the results of the Voronoi algorithm, and converts them to other
representations. is includes a Subdivision based on the Voronoi dia-
gram itself, and another based on the corresponding Delaunay triangula-
tion.

22

4. Geometry Namespace

VoronoiResults.SubdivisionMap — Maps the regions and generator sites of a Voronoi diagram
to the faces of an equivalent Subdivision. Note that pathfinding between
generator sites requires the Subdivision for the corresponding Delaunay
triangulation, as the pathfinding algorithms innamespace Tektosyne.Graph
operate only on the edges of a planar subdivision.

4.8 Windows Specifics

Several static helper classes reference  types from the System.Drawing and System.Windows
namespaces. Since these libraries are specific to theMicrosoWindows platform, the following
types reside in assembly Tektosyne.Windows.

GdiConversions — Converts between geometric primitives and equivalent System.Drawing
types.

PolygonExtensions — Renders RegularPolygon and PolygonGrid instances to System.Windows
types.

WpfConversions — Converts between geometric primitives and equivalent System.Windows
types.

23

C 5

Graph Namespace

e namespace Tektosyne.Graph provides four general-purpose graph algorithms that operate
on two generic interfaces. Figure 5.1 shows all nine types in the namespace, as well as the two
Tektosyne.Geometry types that implement the central graph interface.

Since the mechanisms implemented here are rather complex and not based on any well-
known standards, this chapter goes into greater detail than usual and examines individual
members where appropriate. To see the graph algorithms in action, try the following:

— e demo application Tektosyne.GuiTest.exe contains an interactive test that runs all
four algorithms on both PolygonGrid and Subdivision graphs.

— eHexkit StrategyGame Systemutilizes a complex customizable implementation based
on PolygonGrid graphs. eHexkit User’s Guide also describes the interaction of the game
system and the pathfinding mechanisms.

5.1 Graphs and Agents

e two basic interfaces that connect the four generic algorithms with custom applications
are IGraph2D<T> and IGraphAgent<T>. e first represents the graph itself on which searches
take place, and must always be implemented. e second represents some mobile agent that
traverses the graph, and is required for the AStar<T> and Coverage<T> algorithms.

5.1.1 Graph Structure

ecentral interface IGraph2D<T> represents any graphwhose T nodesmap to polygonal regions
in two-dimensional space. All graph algorithms are created with an IGraph2D<T> instance on
which all searches are performed.

e namespace Tektosyne.Geometry contains two graph implementations, PolygonGrid
and Subdivision. e PolygonGrid node type is PointI: each graph node is the two-dimensional

24

http://www.kynosarges.org/Hexkit.html

5. Graph Namespace

ICloneable, IGraph2D<PointI>
Geometry.PolygonGrid

ICloneable, IGraph2D<PointD>
Geometry.Subdivision

IGraphPath<T>
AStar<T>

AbsoluteLimit: Double { get }
Agent: IGraphAgent<T> { get }
BestNode: PathNode<T> { get }
Graph: IGraph2D<T> { readOnly }
Nodes: IList<T> { get }
RelativeLimit: Double { get, set }
TotalCost: Double { get }
UseWorldDistance: Boolean

+
+
+
+
+
+
+
+

.ctor(IGraph2D<T>)
FindBestPath(IGraphAgent<T>, T, T): Boolean
GetLastNode(Double): T
GetLastPathNode(Double): PathNode<T>

+
+
+
+

Coverage<T>
Agent: IGraphAgent<T> { get }
Graph: IGraph2D<T> { readOnly }
Nodes: ListEx<T> { get }

+
+
+

.ctor(IGraph2D<T>)
FindReachable(IGraphAgent<T>, T, Double): Boolean

+
+

FloodFill<T>
Graph: IGraph2D<T> { readOnly }
Nodes: ListEx<T> { get }

+
+

.ctor(IGraph2D<T>)
FindMatching(Predicate<T>, T): Boolean

+
+

«interface»
IGraph2D<T>

Connectivity: Int32 { get }
NodeCount: Int32 { get }
Nodes: IEnumerable<T> { get }

+
+
+

Contains(T): Boolean
GetDistance(T, T): Double
GetNearestNode(PointD): T
GetNeighbors(T): IList<T>
GetWorldLocation(T): PointD
GetWorldRegion(T): PointD[]

+
+
+
+
+
+

«interface»
IGraphAgent<T>

RelaxedRange: Boolean { get }+

CanMakeStep(T, T): Boolean
CanOccupy(T): Boolean
GetStepCost(T, T): Double
IsNearTarget(T, T, Double): Boolean

+
+
+
+

«interface»
IGraphPath<T>
Nodes: IList<T> { get }
TotalCost: Double { get }

+
+

GetLastNode(Double): T+

NodeArc
Distance: Double { readOnly }
Start: Double { readOnly }
Sweep: Double { readOnly }
VisibleFraction: Double { get }

+
+
+
+

IsObscured(NodeArc): Int32+

PathNode<T>
Children: ListEx<PathNode<T>> { get }
F: Double { get }
G: Double { get }
H: Double { get }
Node: T { readOnly }
Parent: PathNode<T> { get }

+
+
+
+
+
+

Visibility<T>
Graph: IGraph2D<T> { readOnly }
NodeArcs: DictionaryEx<T, NodeArc> { get }
Nodes: ListEx<T> { get }
Threshold: Double { get, set }

+
+
+
+

.ctor(IGraph2D<T>)
FindVisible(Predicate<T>, T, Double = 0): Boolean

+
+

Graph

Graph

Graph

Graph

Agent

Agent

NodeArcs

Figure 5.1:Graph Types

index of a grid element. e Subdivision node type is PointD: each graph node is the two-
dimensional location of a subdivision vertex.

e following IGraph2D<T> members establish the nodes and edges of a graph.

Connectivity — e maximum number of immediate neighbors of any graph node. A node’s
immediate neighbors are the nodes that share an edge with that node, and
therefore can be reached within a single movement step.

NodeCount — e total number of nodes in the graph.

Nodes — Enumerates all nodes in the graph.

Contains — Determines whether the graph contains a specified node.

GetNeighbors — Finds all immediate neighbors of a specified graph node. PolygonGrid adds
an overload that also finds all remoter neighbors within a given range of
movement steps.

25

5. Graph Namespace

5.1.2 World Coordinates

IGraph2D<T> represents a purely abstract system of node connections, but each graph node also
maps to coordinates and regions in two-dimensional space. We refer to these coordinates as
“world coordinates” to distinguish them from node coordinates in some graph-specific system,
e. g. the two-dimensional integer indices of PolygonGrid elements. In the case of Subdivision
graphs, the two systems are identical: graph coordinates equal world coordinates.

e following IGraph2D<T> members establish relationships between graph nodes and
world coordinates (although this is not necessarily the case for GetDistance).

GetDistance — Computes the distance between two specified graph nodes in terms of
some arbitrary distance measure, which may or may not correspond to
world coordinates. Generally, an implementation should use the sim-
plest calculation that obeys two invariants. One is the step cost invari-
ant for the associated graph agent (see below). e other requires that
the sum of the distances between all successive nodes within a sequence
is never less than the distance between any two nodes from the same
sequence.

PolygonGrid counts intervening nodes, i. e. the minimum number of
movement steps between immediate neighbors when moving from the
source node to the target node. Subdivision calculates the Euclidean
distance in world coordinates.

GetNearestNode — Finds the graph node nearest to the specified world coordinates.
GetWorldLocation — Gets the world location of a specified graph node. PolygonGrid returns

the center of the polygonal element that represents the graph node. Sub-
division simply reflects the input.

GetWorldRegion — Gets the vertices, in world coordinates, of the polygonal region covered
by a graph node. PolygonGrid returns the vertices of the polygonal el-
ement that represents the graph node. Subdivision requires that users
manually assign regions to graph nodes, e. g. Voronoi regions if the sub-
division was created from the corresponding Delaunay triangulation.

5.1.3 Moving Agents

e interface IGraphAgent<T> represents a moving “agent,” i. e. anything that can move from
one graph node to another. e AStar<T> and Coverage<T> algorithms require an instance of
this interface to determine valid movement steps, the cost of each step, and other data.

ere is no default implementation for IGraphAgent<T> as the behavior of moving agents
is specific to each individual application. See below for tips on implementing this interface.

CanMakeStep — Determines whether the agent can move from one specified graph node to
another, which must be an immediate neighbor.

26

5. Graph Namespace

CanOccupy — Determines whether the agent can permanently occupy the specified graph
node, i. e. whether the agent’s movement path can end on that node.

GetStepCost — e cost for moving the agent from one specified graph node to another,
which must be an immediate neighbor. e step cost can never be less than
the GetDistance result for the two nodes. Together with the invariant re-
garding distances within node sequences (see above), the step cost invariant
allows the AStar<T> algorithm to use GetDistance to establish lower bounds
for possible path costs.

IsNearTarget — Determines whether the specified node is close enough to the ultimate target
node that pathfinding can successfully terminate. CanOccupymust succeed as
well.

For example, when moving units towards an attack target, reaching the
target itself is unnecessary and usually even impossible. Instead, IsNearTar-
get should succeed when the agent has reached a location from which it can
attack the target.

RelaxedRange — Indicates whether the agent’s path cost limit is strict or relaxed. is option
affects the AStar<T> and Coverage<T> algorithms, as described below.

5.2 A* Pathfinding Algorithm

AStar<T> defines the well-knownA* pathfinding algorithm. e core of the C# implementation
is based on the article Basic A* Pathfinding Made Simple by James Matthews, published in AI
Game Programming Wisdom, Charles River Media 2002.

AStar<T> finds the cheapest path, in terms of the combined cost of all movement steps,
from one specified graph node to another. e path is constructed as a tree of PathNode<T>
objects which associate a graph node with the auxiliary data required by the algorithm.

Once pathfinding is complete, the final PathNode<T> of the cheapest path is stored in the
BestNode property, and the path itself can be backtracked as a sequence of Parent pointers. is
is rather laborious, so the following properties expose the results in a more convenient way:

Nodes — A list of all graph nodes in the movement path, from source to target.

TotalCost — e total cost of the entire movement path returned in Nodes.

GetLastNode — Finds the last node in the movement path whose path cost does not exceed
the specified maximum cost, and for which the agent’s CanOccupymethod suc-
ceeds. e last condition ensures that the result is valid as an intermediate stop
in multi-turn movements.

ese properties are also grouped into a separate interface, IGraphPath<T>, which AStar<T> im-
plements. is interface was designed to represent graph paths without dependence on any
particular pathfinding algorithm, but A* is the only algorithm available so far.

27

5. Graph Namespace

In the rest of this section we’ll describe two options exposed by AStar<T> itself to cus-
tomize pathfinding, and how IGraphAgent<T> interacts with the pathfinding algorithms.

5.2.1 Limited Search Range

Set the floating-point property AStar<T>.RelativeLimit to limit the search range during pathfind-
ing. is may cause A* to generate suboptimal paths or even fail to find any path at all, but
performance on large graphs will be greatly improved.

RelativeLimit defaults to zero. A positive value limits all candidate paths to an elliptical
area around the source and target node of the search. Any candidate nodes that would lead
beyond this area are ignored. All distances are calculated using the graph’s GetDistancemethod.

RelativeLimit determines the radii of the ellipse, relative to the distance of the source and
target nodes. Aer a path search, the read-only property AbsoluteLimit holds the maximum
number of movement steps that were considered for any candidate path.

5.2.2 Minimal World Distance

Set the boolean property AStar<T>.UseWorldDistance to eliminate zero-cost oscillations in the
returned path. Such oscillations have no effect on the total path cost, which is guaranteed to be
optimal, but might cause strangely “unnatural” unit movements.

is effect can occur on graphs such as PolygonGridwhose GetDistancemethod does not
use world coordinates but some more abstract measure (in this case, the number of movement
steps) whichmay not assign the smallest path cost estimate to the visuallymost direct path. e
effect is pronounced on square grids with diagonal neighbor connections: rather than moving
in a direct line, an agent might “sidestep” to an adjacent row or column and then back again.

UseWorldDistance defaults to false. e value true adds an extra comparison to decide
between candidate nodes that have equal path costs. Rather than always selecting the first node
that happens to be generated, A* also checks the world distance of each candidate node to the
target location, and selects the node with the smallest distance.

5.2.3 Transient and Permanent Occupation

A* constructs movement paths from a sequence of individual movement steps between graph
nodes that are immediate neighbors. For each step, wemust ask two questions: can themoving
agentmake the step, and howmuch does it cost? e first question is answered by the two agent
methods CanMakeStep and CanOccupy, the second by GetStepCost (described below).

We use two methods to determine whether a movement step is possible because we want
to distinguish between transient occupation and permanent occupation. CanMakeStep performs
the fundamental testwhether the agent canmove between the specifiednodes at all, i. e. whether
the source-target step can be even a transient part of itsmovement path. A target node forwhich
CanMakeStep fails is never part of a path, unless we reach it by a different source node.

CanOccupy represents an additional test whether the agent can end its movement path on
the specified node, and thus “permanently” occupy the node for the time being. A* requires

28

5. Graph Namespace

that CanOccupy succeeds for the final path node, and also for any intermediate nodes returned
by GetLastNode since they may represent intermediate stops during multi-turn movements.

is distinction between transient and permanent occupation is common in traditional
board games where pieces can jump over occupied squares but land only on free squares. War
games might also relax stacking limits for tiles that units only pass through.

Occupying Intermediate Nodes

A* never calls CanOccupy on the intermediate nodes of a path, only on the final node. is is the
desired and necessary behavior. However, this can cause problems for multi-turn movements
with a non-trivial CanOccupy implementation. Because CanOccupy has not been checked for
intermediate nodes, GetLastNode might return suboptimal nodes, or none at all, when invoked
with less than the total path cost.

For this reason, you must check every GetLastNode call for a valid result, and even if the
result is valid your partial pathmight look rather strange. e best advice is to avoid implemen-
tations where this is a major issue. e second-best advice is to use Coverage<T> and heuristics
to manually piece together valid movement paths through difficult environments.

5.2.4 Movement Step Costs

e total cost of a movement path found by AStar<T> and Coverage<T> is defined as the sum of
the costs of all movement steps between consecutive path nodes. Step costs depend only on the
moving agent and the two directly involved nodes, never on any other nodes in the same path.
is assumption is fundamental since the A* algorithm constructs an optimal path from path
fragments that were originally found as parts of different search paths.

e agent’s integer function GetStepCost determines the cost of onemovement step from
a specified graph node to one of its immediate neighbors. is cost must be positive and no
less than the graph’s GetDistance result for all possible movement steps. CanMakeStep (and also
CanOccupy for the final node of a path) is always called before GetStepCost to ensure that the
agent can enter the target node at all.

5.2.5 Relaxed Movement Range

Implement the agent’s boolean property RelaxedRange to indicate whether the moving agent
enjoys an extended movement range.

If RelaxedRange is false, the maximum path cost supplied to A* limits the agent’s range
before a step is taken. If the cost of entering another location exceeds the remaining fraction
of the maximum cost, the agent cannot enter. Note that this might lead to situations where an
agent cannot move at all because all surrounding nodes exceed the maximum path cost.

If RelaxedRange is true, a movement path ends only aer its total cost equals or exceeds
the maximum path cost. As long as this has not happened, the agent can enter any neighboring
node, regardless of the actual cost of this step. is means that the agent can always make at
least one step in any direction, regardless of its cost.

29

5. Graph Namespace

Marking Nodes as Impassable

Assume you wish to prevent an agent from entering certain graph nodes, for example because
they represent impassable terrain.

If RelaxedRange is false, you could return very high step costs for the desired nodes in
your GetStepCost implementation. If the step costs exceed any maximum path cost supplied to
the pathfinding algorithms, the agent cannot enter these nodes.

However, this trick no longer works if RelaxedRange is true. In this case, your CanMake-
Step implementation must return false for the desired nodes to make them impassable.

5.3 Path Coverage Algorithm

Coverage<T> defines a path coverage algorithm whose results are compatible with AStar<T>.
is algorithm finds all graph nodes that can be reached from a specified node within a given
maximum path cost.

When running on the same IGraph2D<T> and IGraphAgent<T> instances, Coverage<T> pro-
duces exactly those target nodes for which A* would find a path, given the same or a lower
maximum cost. Coverage<T> does not store the actual paths, however – you must run AStar<T>
on any found target nodes for which you wish to obtain a movement path.

Coverage<T> uses the IGraphAgent<T> interface in the same way as AStar<T>. Note that
since all graph nodes found by Coverage<T> represent end points of possibleA*movement paths,
the agent’s CanOccupy implementation must succeed for all of them. Intermediate nodes of pos-
sible paths that do not allow permanent occupation will not appear in the result set.

5.4 Flood Fill Algorithm

FloodFill<T> defines a flood fill algorithm for arbitrary graphs that works like the eponymous
function in paint programs. is algorithm finds all immediate neighbors of a specified graph
node for which a given predicate succeeds, then recursively all neighbors of those neighbors
and so on. e search ends when the graph is exhausted or the predicate fails for all remaining
neighbors of the result nodes.

FloodFill<T> is essentially a simpler version of Coverage<T> that uses a boolean predi-
cate instead of a full-fledged IGraphAgent<T> instance. erefore, its results are not necessarily
related to any valid agent movements.

5.5 Visibility Algorithm

Visibility<T> defines a line-of-sight algorithm that operates on a graph’s world coordinates.
e algorithm requires a source node and a maximum world distance from that source, as well
as a predicate that determines whether a specified graph node obstructs visibility.

30

5. Graph Namespace

Currently, occlusion is binary only – a given node is considered either completely opaque
or completely transparent. A node’s visibility is determined as follows:

1. e node is assigned a tangential arc, determined by drawing tangents from the location
of the source node (as per GetWorldLocation) to the extreme vertices of its polygonal
world region (as per GetWorldRegion).

2. e node is assigned a source distance,measured from the location of the source node to
the nearest vertex of its polygonal world region.

3. e node is compared against all opaque nodes that are not completely obscured by other
opaque nodes. If the node’s tangential arc overlaps that of an opaque node with a smaller
source distance, then the overlapping fraction is considered obscured.

4. e node is considered visible from the source exactly if a certain minimum fraction of
its tangential arc remains visible aer comparing it against all opaque nodes.

is fraction defaults to / but can be changed to any value between zero and one by setting
the Threshold property. Zero is equivalent to Double.Epsilon, i. e. a node is considered visible
if even the slightest bit of its tangential arc remains unobscured. Conversely, a threshold of one
requires that a visible node’s tangential arc is not obscured anywhere.

e computed data for all visited nodes – tangential arc, visible fraction, and source dis-
tance – is available in the NodeArcs collection. Applications can use this information to fine-tune
their own concept of node visibility.

31

C 6

IO Namespace

e namespace Tektosyne.IO contains just a few helper classes for file input/output. ey only
require the four “core”  assemblies, and therefore reside in assembly Tektosyne.Core.

IOUtility — Static methods to search directories and directory trees for file names contain-
ing wild cards, and to textually replace specified inclusion tags in a given text
file with other files.

PathEx — Static methods to shorten and compare file paths, manipulate directory sepa-
rators (either variant), and to create random temporary files with a given ex-
tension.

RootedPath — Combines a fully qualified file path with an optional directory prefix, so that
the file path is automatically shortened to a relative path if the prefix matches.

32

C 7

Net Namespace

e namespace Tektosyne.Net contains several types for using the Simple  protocol. Since
this protocol is exclusive to Windows, all types reside in assembly Tektosyne.Windows.

MapiAddress — e sender or recipient of a Simple  message.

MapiException — rown when an error occurs while using the Simple  protocol.

MapiMail — Static methods that use Simple  to access the user’s address book and
send e-mails with optional attachments.

e  has no built-in support for Simple . We access this protocol through our own
managed/unmanaged interfaces defined in the namespace Tektosyne.Win32Api.

33

C 8

Win32Api Namespace

e namespace Tektosyne.Win32Api contains import declarations for unmanaged Win32 
functions andmanaged representations ofWin32  structures. Naturally, all types are specific
to Windows and reside in assembly Tektosyne.Windows.

e import declarations are by no means exhaustive. ey cover only a handful of func-
tions that are needed by other Tektosyne types, or that I used elsewhere at some point.

Kernel — Interfaces the Windows system library kernel32.dll.

MemoryStatus(Ex) — Contains information about the current state of both physical and virtual
memory.

User — Interfaces the Windows system library user32.dll.

8.1 Safe Memory Handles

e following types derive from the  class SafeHandle to provide exception-resistant handles
for unmanaged memory blocks.

SafeMemoryHandle — Extends SafeHandle with methods that copy data to and from unman-
aged memory.

SafeGlobalHandle — Implements SafeMemoryHandle for memory blocks that are allocated by
AllocHGlobal and released by FreeHGlobal.

SafeMapiHandle — Implements SafeMemoryHandle for memory blocks that are implicitly al-
located by Simple  functions and released by MAPIFreeBuffer.

34

8. Win32Api Namespace

8.2 Simple MAPI Protocol

e following types interface the Simple  protocol. e namespace Tektosyne.Net builds
convenient high-level wrappers around these types.

Mapi — Interfaces the Windows system library mapi32.dll.

MapiFileDesc — Contains information about a file containing amessage attachment stored
as a temporary file. (Seriously, this is the actual summary from the Win-
dows  documentation!)

MapiFileTagExt — Specifies a message attachment’s type at its creation and its current form
of encoding so that it can be restored to its original type at its destination.

MapiMessage — Contains information about a Simple  message.

MapiRecipDesc — Contains information about a message sender or recipient.

MapiError — Defines error codes returned by Simple  calls.

MapiFileFlags — Defines attachment flags for  messages.

MapiFlags — Defines flags supplied to Simple  calls.

MapiMessageFlags — Defines status flags for  messages.

MapiRecipClasses — Defines recipient classes for  messages.

35

C 9

Windows Namespace

enamespace Tektosyne.Windows contains types that support theWindowsPresentationFoun-
dation (), and naturally resides in assembly Tektosyne.Windows.

Many Tektosyne.Windows types are unrelated except in their general purpose to simplify
 development; these are listed below. e following sections group the remaining types
which handle bitmap manipulation, concurrent drawing, default theme selection, and Win-
dows Forms interoperability.

ContainerVisualHost — Extends FrameworkElement to host a single ContainerVisual child el-
ement. is lets you host Visual objects in structures that require a
UIElement or FrameworkElement.

FormatTextBlock — Extends TextBlock with persistent format specifications and format-
ting methods.

MessageDialog — Extends Window to simulate a MessageBox with a scrollable secondary
message area.

StackTextBlock — Extends TextBlockwith a stack of recently displayedmessages, so that
clients can easily restore a previous message without having to store
it locally.

TaskEvents — Combines completion, notification, and error events with a Stop-
watch timer to simplify task management. All events are marshalled
across a specified Dispatcher if desired.

TreeHelper — Static methods to simplify navigating the logical and visual trees of
 objects, including a method that finds the owner of an active
ContextMenu from its clicked item.

WindowsExtensions — Staticmethods that extend various types to process a Dispatcher’s
message queue; get a Control’s type face; scroll a ScrollViewer by a

36

9. Windows Namespace

specified offset; ensure that a selected ListBox item is visible; and con-
vert between + and  Color values.

WindowsUtility — Static properties and methods that retrieve the system’s memory sta-
tus; determine the  resolution of a Visual or the primary screen;
and find the Icon or BitmapSource for a MessageBoxImage value.

ScrollDirection — Specifies the four possible scroll directions. Used by WindowsExten-
sions methods.

9.1 BitmapManipulation

is section comprises types for directly manipulating the pixels of an s bitmap, which is
stored in an instance of the  WriteableBitmap class.

BitmapBuffer — Provides a secondary buffer for a WriteableBitmap. Prior to . 3.5 ,
such a buffer was necessary for accessing the bitmap’s pixels.

BitmapUtility — Static methods to access the BackBuffer pixels of a WriteableBitmap. As of
. 3.5 , this is faster andmore convenient than using a separate Bitmap-
Buffer.

ColorVector — Represents a displacement in s color space which can be added to Color
values.

9.2 Concurrent Drawing

 drawing always has some inherent concurrency, due to the separation of dispatcher thread
and render thread. ehelper classes described in this section increase concurrency by running
multiple dispatcher threads within the same window. However, the single render thread still
places an upper limit on the amount of parallelism achievable purely within .

Let’s examine each of these rather complex issues in more detail.

9.2.1 Dispatcher & Render Thread

All user code in a  application normally lives on a single dispatcher thread. is is the
thread that calls Application.Run to start the Dispatcher loop, which keeps processing user
input and other Windows messages throughout the application’s lifetime. All drawing starts
on this thread, either implicitly by placing  elements that have a predefined appearance, or
explicitly by calling drawing methods within an OnRender override etc.

Once the dispatcher thread has processed all drawing instructions and returned to its
input loop, the prepared drawing content is handed off to the render thread. is thread always
runs in the background of a  application and is completely inaccessible to user code. Its job
is to translate the prepared content into actual screen pixels, using the DirectX .

37

9. Windows Namespace

9.2.2 Multiple Dispatcher Threads

 provides two well-known options for concurrent drawing. You can create “frozen” objects
in a regular background thread, or you can associate multiple top-level windows with separate
dispatcher threads. However,  team member Dwayne Need has described a third mecha-
nism that allows multiple threads to draw mutable objects within the same window.

is option combines several rather arcane classes (HostVisual, PresentationSource,
VisualTarget) to associate an arbitrary Visual with its own Dispatcher running on a back-
ground thread. e Tektosyne library provides a simplified wrapper for this task.

ConcurrentVisualHost — is is the only class you need. An instance can be placed anywhere
a FrameworkElement is acceptable. e WorkerDispatcher and Work-
erVisual properties expose the Dispatcher and Visual, respectively,
that live on an automatically started background thread. You may
specify a WorkerVisual during construction, but you can also change
it at any time.

VisualSource — Manages cross-thread marshalling within a ConcurrentVisualHost.
is class was adapted from Dwayne Need’s example. You don’t
need to instantiate it yourself, unless you wish to write your own
version of ConcurrentVisualHost.

For an example of how to use ConcurrentVisualHost, please refer to the source code for the
ConcurrentDrawingTest dialog in the demo application Tektosyne.GuiTest.exe. e following
points are especially noteworthy:

— All WorkerVisual operations must be wrapped in WorkerDispatcher.BeginInvoke calls.
edispatcher invocation is necessary because WorkerVisual lives on a background thread,
and BeginInvoke rather than Invoke is necessary to achieve concurrent drawing.

— ConcurrentVisualHost implements IDisposable to allow manually stopping WorkerDis-
patcher and terminating its background thread. Call Dispose when removing a Concur-
rentVisualHost from an application that will continue running.

— Do not directly embed ConcurrentVisualHost in a  page! Visual Studio attempts to
instantiate all declared objects when a  page is opened in design view. is starts
unneeded background threads and can even freeze Visual Studio for several seconds.
Always create and attach ConcurrentVisualHost objects from code-behind.

9.2.3 Limitations

As it turns out, multi-threaded drawing in  is not quite as awesome as one might think.
ere are two serious limitations. Presumably these are also the reason why Microso does not
provide a standard class with the functionality of ConcurrentVisualHost.

38

http://blogs.msdn.com/b/dwayneneed/archive/2007/04/26/multithreaded-ui-hostvisual.aspx

9. Windows Namespace

1. Background dispatcher threads do not receive user input. If users should be able to inter-
act with visual elements owned by a background thread, you must capture mouse clicks
on the foreground thread and perform hit detection manually.

2. Background dispatcher threads only speed up dispatcher operations, not render thread
operations. ere is still only a single render thread, so you won’t see much of a speedup
if your content is more expensive to render to the screen (on the render thread) than to
prepare for drawing (on the dispatcher thread).

e second problem surfaced in the ConcurrentDrawingTest dialog. An early version created
thousands of random rectangles in each worker thread. As it turned out, the render thread took
so long to process so many shapes that all measurable speedup was lost! e current version
“cheats” by drawing just 100 rectangles and calling Thread.Sleep(1000). is simulates drawing
operations that are expensive on the dispatcher thread but cheap on the render thread.

What are your options if an overworked render thread prevents decent concurrency?
First, you could try moving more work into the dispatcher thread, e. g. by manually clipping
hidden objects so that drawing operationswithout visible effect are not emitted in the first place.

Second, you could draw to a RenderTargetBitmap and show that bitmap instead of exe-
cuting your drawing operations directly on the WorkerVisual. However, if that is acceptable
you might consider creating the bitmap on an ordinary ThreadPool thread instead, and simply
freeze it for display.

Lastly, if nothing else helps you’ll have to use a different  that does its own rendering,
e. g. an embedded SlimDX or SharpDX surface; but first you might wish to consult my page
WPF Drawing Performance for basic tips on how to speed up custom drawing in .

9.3 Default Theme Selection

Windows themes define the overall appearance of a  application. e  ships with seven
default themes, matching the default themes of various Windows editions.

Usually,  automatically selects an appropriate default theme for the target system.
e following types allow selecting a different default theme when a  application starts up.

DefaultTheme — Enumerates the available  default themes.

DefaultThemeSetter — Changes the application’s theme to the specified DefaultTheme.

9.4 Windows Forms

Originally intended as the successor to Windows Forms,  was quietly put into maintenance
mode aer a long and troubled development before achieving feature parity with the older .
Now it is unclear if and when either  or a possible Silverlight-based successor will officially
add the missing functionality. Fortunately, it’s fairly simple to access existing Windows Forms
controls and dialogs from a  application.

39

http://slimdx.org/
http://sharpdx.org/
http://www.kynosarges.org/WpfPerformance.html

9. Windows Namespace

e following types are all related to Windows Forms, either improving existing types or
helping to interface the two s.

ComponentControl — Extends a Windows Forms Control to automate the disposal of non-
Control components, including error providers, help providers, and
tool tips.

CustomColorDialog — Extends a Windows Forms ColorDialog to automatically persist its set
of custom colors, and to accept a  Window owner and  Color
values.

HwndWrapper — Implements a Windows Forms IWin32Window whose IntPtr handle is
specified explicitly or else derived from a  Window or IWin32Window
(an eponymous and equivalent but incompatible interface!).

is conversion wrapper allows passing  windows to certain
Windows Forms dialogs, such as ColorDialog.

NumericUpDownEx — Extends aWindows Forms NumericUpDown control to automatically val-
idate manually entered values, show a tool tip for the legal range of
values, and show an error message if the current value is invalid.

NumericUpDownHost — Extends ComponentControl to conveniently host one NumericUpdownEx
control, along with its dedicated tool tip and error provider compo-
nents. Forwarders provide direct access to the properties of the hosted
control.

WindowsFormsHostEx — Extends a  WindowsFormsHost to correctly transfer input focus to
the hosted control when the corresponding Target binding of a 
Label is activated. Without this help,  seems to ignore allWindows
Forms controls in a  Window but the first.

9.4.1 Hosting Example

Let’s see how we can employ these types to host a NumericUpDownEx control in a  window.
Figure 9.1 shows the complete  declaration. No code-behind is necessary, except to handle
the ValueChanged event. Observe the following in particular:

— e label’s Target refers to the WindowsFormsHostEx element, not to the embedded Numeric-
UpDownHost. is enables the host to correctly transfer input focus.

— e hosted Windows Forms control, NumericUpDownHost, is simply specified as the single
child element of the WindowsFormsHostEx element.

— We use NumericUpDownHost instead of NumericUpDown(Ex) so that the associated tool tip
and error provider components are correctly disposed of.

40

9. Windows Namespace

e NumericUpDownHost.Name property merely allows the attached ValueChanged handler to ac-
cess the current input value, and is not used by other  elements.

e involved Tektosyne.Windows types are shown in Figure 9.2. e forwarder properties
of NumericUpDownHost allow customizing the embedded NumericUpDownEx control directly from
. e latter is implicitly created and does not appear in the  declaration.

1 <Window x:Class="ChangeSidesDialog"
2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4 xmlns:tw="clr-namespace:Tektosyne.Windows;assembly=Tektosyne.Windows">
5 <StackPanel Orientation="Horizontal">
6 <Label Target="{Binding ElementName=SidesUpDownHost}">_Sides:</Label>
7 <tw:WindowsFormsHostEx x:Name="SidesUpDownHost" Width="60">
8 <tw:NumericUpDownHost x:Name="SidesUpDown"
9 Minimum="3" Maximum="12" TextAlign="Right"

10 ValueChanged="OnSidesChanged" />
11 </tw:WindowsFormsHostEx>
12 </StackPanel>

Figure 9.1: NumericUpDown Hosting

41

9. Windows Namespace

Control
ComponentControl

Components: Container { readOnly }
ErrorProvider: ErrorProvider { get }
HelpProvider: HelpProvider { get }
ToolTip: ToolTip { get }

+
+
+
+

.ctor+

NumericUpDown
NumericUpDownEx

ErrorMessage: String { get, set }
ErrorProvider: ErrorProvider { get, set }
InfoMessage: String { get, set }
IsTextValid: Boolean { get }
MaxTextLength: Int32 { get }
ToolTip: ToolTip { get, set }

+
+
+
+
+
+

.ctor
FormatValue(Decimal): String
UpdateToolTip: Void

+
+
+

ComponentControl
NumericUpDownHost

Accelerations: NumericUpDownAccelerationCollection { get }
BorderStyle: BorderStyle { get, set }
DecimalPlaces: Int32 { get, set }
Hexadecimal: Boolean { get, set }
HostedControl: NumericUpDownEx { readOnly }
Increment: Decimal { get, set }
Maximum: Decimal { get, set }
Minimum: Decimal { get, set }
ReadOnly: Boolean { get, set }
TextAlign: HorizontalAlignment { get, set }
ThousandsSeparator: Boolean { get, set }
UpDownAlign: LeftRightAlignment { get, set }
Value: Decimal { get, set }
ValueChanged: EventHandler

+
+
+
+
+
+
+
+
+
+
+
+
+
+

.ctor+

WindowsFormsHost
WindowsFormsHostEx

.ctor+

HostedControl

Child

Figure 9.2: NumericUpDown Types

42

C 10

Xml Namespace

e namespace Tektosyne.Xml contains helper methods for  serialization. e  defines
several different s for this purpose, and only some of them reside in the “core” assemblies.
Consequently, our types are split between Tektosyne.Core and Tektosyne.Windows.

XmlUtility — Static helper methods to manipulate and read typed attributes from an
XmlReader. Resides in assembly Tektosyne.Core.

XmlSerialization — Static helper methods to read an XAttribute as an enumeration value,
and to (de)serialize objects using NetDataContractSerializer. Resides
in assembly Tektosyne.Windows.

43

	Assemblies
	Root Namespace
	Exceptions
	Mathematics
	Strings
	Tuples

	Collections Namespace
	Collection Keys
	Extended Collections
	Specialized Collections
	Tree Collections
	Comparing Objects
	Sorting & Searching

	Geometry Namespace
	Geometric Primitives
	Basic Algorithms
	Line Intersection
	Point Comparisons
	Regular Polygons
	Planar Subdivisions
	Edge and Face Keys
	Half-Edge Cycles
	Vertex Distances
	Vertex Regions

	Voronoi Diagrams
	Windows Specifics

	Graph Namespace
	Graphs and Agents
	Graph Structure
	World Coordinates
	Moving Agents

	A* Pathfinding Algorithm
	Limited Search Range
	Minimal World Distance
	Transient and Permanent Occupation
	Movement Step Costs
	Relaxed Movement Range

	Path Coverage Algorithm
	Flood Fill Algorithm
	Visibility Algorithm

	IO Namespace
	Net Namespace
	Win32Api Namespace
	Safe Memory Handles
	Simple MAPI Protocol

	Windows Namespace
	Bitmap Manipulation
	Concurrent Drawing
	Dispatcher & Render Thread
	Multiple Dispatcher Threads
	Limitations

	Default Theme Selection
	Windows Forms
	Hosting Example

	Xml Namespace

